

Python Loops
ython has two primitive loop commands:

• while loops

• for loops

What is while loop in Python?

The while loop in Python is used to iterate over a block of code as long as the

test expression (condition) is true.

We generally use this loop when we don't know the number of times to iterate

beforehand.

Syntax of while Loop in Python

while test_expression:

 Body of while

In the while loop, test expression is checked first. The body of the loop is

entered only if the test_expression evaluates to True. After one iteration, the test

expression is checked again. This process continues until

the test_expression evaluates to False.

In Python, the body of the while loop is determined through indentation.

The body starts with indentation and the first unindented line marks the end.

Python interprets any non-zero value as True. None and 0 are interpreted

as False.

Flowchart of while Loop

Flowchart for while loop in Python

Example:

Print i as long as i is less than 6:

i = 1

while i < 6:

 print(i)

 i = i+1

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need to

define an indexing variable, i, which we set to 1.

The break statement:

With the break statement we can stop the loop even if the while condition is true:

Example:

i = 1

while i < 6:

 print(i)

 if (i == 3):

 break

 i += 1

The continue Statement:

With the continue statement we can stop the current

iteration, and continue with the next:

Continue to the next iteration if i is 3:

Example:

i = 0

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

Note that number 3 is missing in the result

With the else statement we can run a block of code once when the

condition no longer is true:

Print a message once the condition is false:

Example:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

Program to add natural

numbers up to

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

n = 10

initialize sum and counter

sum = 0

i = 1

while i <= n:

 sum = sum + i

 i = i+1 # update counter

print the sum

print("The sum is", sum)

In the above program, the test expression will be True as long as our counter

variable i is less than or equal to n (10 in our program).

We need to increase the value of the counter variable in the body of the loop.

This is very important (and mostly forgotten). Failing to do so will result in an

infinite loop (never-ending loop).

Finally, the result is displayed.

Python For Loops
A for loop is used for iterating over a sequence (that is either a list, a tuple, a

dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and works more

like an iterator method as found in other object-orientated programming
languages.

With the for loop we can execute a set of statements, once for each item in a list,

tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

The for loop does not require an indexing variable to set beforehand.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana":

for x in "banana":

 print(x)

The break Statement

With the break statement we can stop the loop before it has looped through all the

items:

Example

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

 if x == "banana":

 break

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

 if x == "banana":

 break

Example

Exit the loop when x is "banana", but this time the break comes before the print:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

The continue Statement

With the continue statement we can stop the current iteration of the loop, and

continue with the next:

Example

Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue

 print(x)

The range() Function
To loop through a set of code a specified number of times, we can use

the range() function,

The range() function returns a sequence of numbers, starting from 0 by default,

and increments by 1 (by default), and ends at a specified number.

Example

Using the range() function:

for x in range(6):

 print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to

specify the starting value by adding a parameter: range(2, 6), which means

values from 2 to 6 (but not including 6):

Example

Using the start parameter:

for x in range(2, 6):

 print(x)

The range() function defaults to increment the sequence by 1, however it is

possible to specify the increment value by adding a third parameter: range(2,
30, 3):

Example

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):

 print(x)

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when the

loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):

 print(x)

else:

 print("Finally finished!")

Note: The else block will NOT be executed if the loop is stopped by

a break statement.

Example

Break the loop when x is 3, and see what happens with the else block:

for x in range(6):

 if x == 3: break

 print(x)

else:

 print("Finally finished!")

#If the loop breaks, the else block is not executed.

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

Print each adjective for every fruit:

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

 for y in fruits:

 print(x, y)

The pass Statement

for loops cannot be empty, but if you for some reason have a for loop with no

content, put in the pass statement to avoid getting an error.

for x in [0, 1, 2]:

 pass

having an empty for loop like this, would raise an error without the pass
statement

Python Loop Exercises

Practice all exercises using python IDE and see the outputs:

1) Take 10 integers from keyboard using loop and print their average value on the screen.

Solution:

sum = 0

i = 10

while i>0:

print (“Enter number:”)

number = input()

sum = sum+num

i = i-1

print (“Average is:”, sum/10)

2) Print the following patterns using loop:

Solution:

3) Print multiplication table of 24, 50 and 29
using loop.

Solution:

4) Factorial of any number n is represented by n! and is equal to
1*2*3*....*(n-1)*n. E.g.-
4! = 1*2*3*4 = 24
3! = 3*2*1 = 6
2! = 2*1 = 2
Also,
1! = 1

0! = 1
Write a program to calculate factorial of a number.

Solution:

5) Find the output:

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

Solution:

a = 5

b = 1

while b <= 5:

 print ("%d * %d = %d" %(a, b, a*b))

 b+=1

6)

Python program to illustrate
while loop

count = 0
while (count < 3):
 count = count + 1
 print("Hello Geek")

7)

Prints all letters except 'e' and 's'
i = 0
a = 'geeksforgeeks'

while i < len(a):
 if a[i] == 'e' or a[i] == 's':
 i += 1
 continue

 print('Current Letter :', a[i])
 i += 1

8)
break the loop as soon it sees 'e'
or 's'
i = 0
a = 'geeksforgeeks'

while i < len(a):
 if a[i] == 'e' or a[i] == 's':
 i += 1
 break

 print('Current Letter :', a[i])
 i += 1

9)
Python program to demonstrate
while-else loop

i = 0
while i < 4:
 i = i+1
 print(i)
else: # Executed because no break in for
 print("No Break\n")

i = 0
while i < 4:
 i += 1
 print(i)

 break
else: # Not executed as there is a break
 print("No Break")

10)
a = int(input('Enter a number (-1 to quit): '))

while a != -1:
 a = int(input('Enter a number (-1 to quit): '))

11)

Python program to
demonstrate break statement

s = 'geeksforgeeks'
Using for loop
for letter in s:

 print(letter)
 # break the loop as soon it sees 'e'
 # or 's'
 if letter == 'e' or letter == 's':
 break

print("Out of for loop")
print()

i = 0

Using while loop
while True:
 print(s[i])

 # break the loop as soon it sees 'e'
 # or 's'
 if s[i] == 'e' or s[i] == 's':
 break
 i += 1

print("Out of while loop")

12)

Python program to

demonstrate continue
statement

loop from 1 to 10
for i in range(1, 11):

 # If i is equals to 6,
 # continue to next iteration
 # without printing
 if i == 6:
 continue
 else:
 # otherwise print the value
 # of i
 print(i, end=" ")

